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a b s t r a c t 

Cancer is a dangerous disease that causes death worldwide. Discovering few genes relevant to one cancer 

disease can result in effective treatments. The challenge associated with the Microarray datasets is its 

high dimensionality; the huge number of features compared to the modest number of samples in these 

datasets. Recent research efforts attempted to reduce this high-dimensionality using different feature se- 

lection techniques. This paper presents an ensemble feature selection technique based on t -test and ge- 

netic algorithm. After preprocessing the data using t -test, a Nested Genetic Algorithm, namely Nested-GA, 

is used to get the optimal subset of features by combining data from two different datasets. Nested-GA 

consists of two Nested Genetic Algorithms (outer and inner) that run on two different kinds of datasets. 

The Outer Genetic Algorithm (OGA-SVM) works on Microarray gene expression datasets, whereas the In- 

ner Genetic Algorithm (IGA-NNW) runs on DNA Methylation datasets. Nested-GA is performed on a colon 

cancer dataset with 5-fold cross validation. After applying Nested-GA, the Incremental Feature Selection 

(IFS) strategy is used to get the smallest optimal genes subset. The genes subset has been validated on an 

independent dataset resulting in 99.9% classification accuracy. Consequently, the biological significance of 

the resulting optimal genes is validated using Enrichment Analysis. Moreover, the results of Nested-GA 

have been compared to the results of other feature selection algorithms that have been run on either 

Gene Expression or DNA Methylation datasets. From the experimental results, Nested-GA showed the 

highest classification performance with a small optimal feature subset compared to the other algorithms. 

Furthermore, by running Nested-GA on lung cancer datasets that contain two different cancer subtypes, 

it resulted in significantly better classification accuracy (98.4%) compared to the accuracy of a previous 

research (84.6%) that utilized lung cancer DNA-Methylation data only. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

There are many types of cancer that can be caused by either ge-

etic or epigenetic changes. Generally, cancer is a complex disease

hat is resulting from interactions of biological processes. Several

easurement platforms have been developed and implemented in

ioinformatics to understand these cancer processes ( Gentle, Här-

le, & Mori, 2010 ). One basic goal of bioinformatics cancer systems

s to infer the malignant drivers of those biological processes. 

Microarrays are one of the well-established tools used to iden-

ify and analyze the biological data. One function of the Microar-

ay experiments is to monitor the expression level of genes on

he genome scale ( Whitworth, 2010 ). Results of those experiments

ould be formed in a matrix, called Gene Expression matrix, where
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ach row corresponds to a particular gene and each column repre-

ents an experimental condition. 

DNA Methylation (DNAm) is a common epigenetic mechanism,

hich controls the regulation of Gene Expression and is useful for

arly detection of cancer. There are many databases, that serve as,

epositories of huge experimental data, such as the Gene Expres-

ion Omnibus (GEO) and ArrayExpress. Those databases contain

ata from Microarray experiments on a wide range of samples and

nder a variety of experimental conditions ( Vazquez, de la Torre,

 Valencia, 2012 ). The International Cancer Genome Consortium

CGC ( http://icgc.org/ ) and the Cancer Genome Atlas TCGA ( http:

/cancergenome.nih.gov/ ) projects developed cancer-specific reposi-

ories that contain complete genotypes. For cancer genome studies,

hose repositories are considered the main reference that offers the

pportunity to test new approaches with real data ( Vazquez et al.,

012 ). 

The growing size of biomedical data resulted in many research

hallenges for the analysis of data and offer more opportunities to

https://doi.org/10.1016/j.eswa.2018.12.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.12.022&domain=pdf
mailto:s.sayed@fci-cu.edu.eg
mailto:m.nassef@fci-cu.edu.eg
mailto:amr.badr@fci-cu.edu.eg
mailto:i.farag@fci-cu.edu.eg
http://icgc.org/
http://cancergenome.nih.gov/
https://doi.org/10.1016/j.eswa.2018.12.022


234 S. Sayed, M. Nassef and A. Badr et al. / Expert Systems With Applications 121 (2019) 233–243 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E  

s  

p  

F  

(

 

s  

S  

e  

s  

a  

f  

a  

&  

s  

p  

W  

d  

f  

s  

e  

o  

g  

e  

a  

d

 

1  

o  

G  

l  

e  

i  

c  

c  

e  

g  

G  

t  

m  

a  

t  

s  

t  

c  

i  

s  

g  

r  

p  

s

 

m  

d  

i  

c  

n  

e  

o  

s  

t

 

g  

c  

s  

a  
discover new knowledge from this data. Biomedical markers de-

tection, diseases diagnosis, drug design and classification of high-

dimensional data are some of these research trends. 

Discovering few number of genes relevant to one cancer dis-

ease could derive in effective treatments. The challenge with Mi-

croarray datasets is its high dimensionality. Unfortunately, a Mi-

croarray dataset consists of a small number of observations but

with many genes. The noise and variability of Microarray data add

complications to the Microarray data analysis. With the high ratio

between the number of features (genes) and the number of sam-

ples, classifying cancer subtypes becomes a complex process. It is

common that a huge number of genes may be uninformative for

the classification because they are either irrelevant or redundant

( Abusamra, 2013 ). So, dimensionality reduction and feature selec-

tion techniques may be very useful for such a problem. 

From the large number of genes in Microarray gene expression

dataset, only a small number of genes strongly correlates with the

targeted disease. More studies suggested that only a small number

of genes can be sufficient markers for a specific disease ( Li & Yang,

2002; Xiong, Fang, & Zhao, 2001 ), where the genes biological rela-

tionship with respect to the target disease can be easily identified.

Those few genes are called biomarker genes. Using only biomarker

genes in decision making reduces the computational effort and in-

creases the classification accuracy. Selecting an effective and more

representative gene subset is called a biomarker problem. In a Mi-

croarray dataset, there are many genes that are highly correlated.

Those genes are considered redundant genes. In other words, if a

biomarker gene set contains redundant genes, then this genes’ set

is not a comprehensive representation of the characteristics of the

target disease. Redundant genes limit the efficiency and generality

of the biomarker genes set ( Ding & Peng, 2005 ), and so, the issue

of gene redundancy should be solved in biomarker problem. 

From the aforementioned problems, it is obvious that applying

F eature S election (FS) techniques in bioinformatics has become an

important prerequisite step for model building rather than being

an optional choice. Moreover, most of the pattern recognition tech-

niques were not designed to deal with huge number of irrelevant

features, so combining them with FS techniques results in more

efficient solutions ( Saeys, Inza, & Larrañaga, 2007 ). Feature selec-

tion refers to selecting the most relevant features from the original

feature space ( Abusamra, 2013 ). 

One important objective of feature selection techniques is to

avoid over-fitting and improve model performance, i.e., higher pre-

diction accuracy for supervised classification and better cluster

detection for unsupervised classification. Improving a model per-

formance means providing faster and more cost-effective model.

There are many FS techniques that are differing in the way each

technique copes with the feature space to form a feature subset. In

the classification problem context, according to how FS techniques

combine the feature selection search with the construction of the

classification model, they can be divided into three categories; fil-

ter methods, wrapper methods, and embedded methods. 

The Filter techniques select relevant features independently of

the selection model. They measure the relevance of features by

only using the properties of the data then order the features ac-

cording to the calculated relevance score. The Filter techniques are

simple and fast but they neglect the features dependencies. Fil-

ter techniques are performed as a pre-processing step in the se-

lection model and can be followed by one or more classification

algorithms. The second category of FS techniques are the Wrapper

techniques where selecting the features is dependent on the selec-

tion model. They define feature subsets and evaluate each by us-

ing a classification algorithm. Then, they select the feature subset

with the high evaluation measure. The Wrapper techniques take

into consideration the feature dependencies, but they are slower

and computationally intensive. In the third category, namely the
mbedded techniques, the feature selection is built into the search

tep done by classification algorithm. They consider the feature de-

endencies but with less computations than Wrapper techniques.

or more details about feature selection, the reader can refer to

 Saeys et al., 2007 ). 

Using one FS technique does not guarantee obtaining a univer-

ally optimal feature subset ( Yeung, Bumgarner, & Raftery, 2005 ).

o, an ensemble FS approach runs different FS techniques where

ach technique produces a separate feature subset. Then, the en-

emble FS approach combines the resulting feature subsets to form

 final feature subset as its outcome. Ensemble FS approaches dif-

er from each other in how they combine features. They may use

veraging over multiple separate feature subsets ( Levner, 2005; Li

 Yang, 2002 ) that result from performing different runs of the

ame technique (for example, genetic algorithm) to assess the im-

ortance of each feature ( Li, Umbach, Terry, & Taylor, 2004; Li,

einberg, Darden, & Pedersen, 2001 ), and using a collection of

ecision trees as random forests to assess the relevance of each

eature ( Díaz-Uriarte & De Andres, 2006; Jiang et al., 2004 ). En-

emble FS approaches improve the robustness, stability, and gen-

rality but they require additional computations. The development

f ensemble frameworks is a promising trend for improving the

ene selection problem and the feature selection process in gen-

ral. That’s because the characteristics of an ensemble framework

re more flexible and efficient in dealing with high dimensional

ata ( Chin et al., 2015 ). 

Genetic A lgorithms (GAs), inspired by John Holland during the

970s, are a class of evolutionary algorithms motivated by the bi-

logical theory of evolution, made popular ( Scrucca et al., 2013 ). A

 enetic A lgorithm (GA) is used in search and optimization prob-

ems utilizing the “survival of the fittest” concept as known in

volutionary biology. A GA mimics the natural selection process

n producing sets of solutions (population). Each solution, called

hromosome, consists of a set of features (genes) that represent a

andidate solution for the underlined problem. GA repeatedly gen-

rates solutions, evaluates their fitness and terminates when the

iven objective is achieved or when some stopping criteria is met.

enetic operators and fitness function characterize the implemen-

ation of a genetic algorithm. Fitness function is considered the

ain guide to the selection of the features. It is used to assign

 probability to each chromosome in the population which reflects

he quality of that chromosome and controls keeping that chromo-

ome to the next generation. Genetic operators are used to inves-

igate the entire search space and to avoid the local minima. The

ommonly used operators are crossover and mutation. Crossover

s a mechanism for swapping genes between two randomly cho-

en chromosomes producing two new chromosomes for the next

eneration. Crossover can be performed on different kinds of rep-

esentations (like binary or floating-point encodings). It also can be

erformed at single or multiple crossover points between chromo-

omes ( Coley, 1999 ). 

The mutation operator is the mechanism of flipping one or

ore gene in a randomly chosen chromosome according to a pre-

efined probability. Altering gene values in mutation guarantees

nvestigating all the search space of the underlying problem and

ausing variations in the resultant solutions. Mutation can be Bi-

ary encoding mutation, Value encoding mutation, or Permutation

ncoding mutation ( Malhotra, Singh, & Singh, 2011 ). Elitism is an

ptional operator in a GA’s implementation that allows retaining

ome chromosomes with high fitness values to the next genera-

ions. 

Support Vector Machine (SVM) is a supervised classification al-

orithm developed by Cortes and Vapnik (1995) . SVM is used to

lassify high-dimensional and noisy data. SVM was originally de-

igned for binary classification problems, but recently several vari-

nts of SVM have been introduced to deal with multiclass prob-
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ems. The basic idea of SVM is to generate high dimensional fea-

ure space according to the attributes of features in the data. Then,

t defines a hyperplane (decision boundary) to separate the fea-

ures into two portions where each one contains the data points of

ne class. The shortest distance between the first and second sam-

les that are next to the hyperplane is defined as the margin of

he hyperplane ( Karatzoglou, Meyer, & Hornik, 2006 ). Support vec-

or learning can be presented as the problem of identifying a hy-

erplane with the largest margin to split one class from the other.

t depends on the maximum-margin principle which means maxi-

izing the margin between the decision hyperplane and the clos-

st training samples. The hyperplane with a large margin avoids

he noise effect more than the hyperplane with a small margin. 

An Artificial Neural Networks (ANN) consists of multiple layers

f interconnected neuron units. The first layer is the input layer

o match the feature space. The input layer is followed by one or

ore layers of nonlinearity then the last layer is a linear regression

r classification layer to match the output space. For the interme-

iate layers, output from one layer is forwarded as an input to the

ext layer. Each layer has some weights that are used with the in-

ut to form its output. 

Each time the training samples are used by an ANN to adapt the

eights in order to minimize the classification error. Adapting the

eights is called the learning process. Deep-learning ( LeCun, Ben-

io, & Hinton, 2015 ) architecture involves multiple levels of non-

inearity. So, the basic framework of multi-layer neural networks

an be used to perform deep learning tasks ( Arora, Candel, Lan-

ord, LeDell, & Parmar, 2015 ). 

The most important advantage of the deep-learning is that

earning is not done by human engineers and it does not re-

uire human interference. Alternatively, the layers weights are

earned from data using general-purpose learning techniques.

eep-learning is applicable to many domains of science and has

xhibited high performance on complex and high dimensional

ata. So, it is more suitable for Microarray data. 

Various research studies have been attempted to apply mis-

ellaneous feature selection techniques over Microarray data. One

tudy aimed to identify the biomarker genes for glioma-alerted by

ntegrating the Monte Carlo simulation with singular value decom-

osition (SVD) ( Han, Lai, Xie, Li, & Zhu, 2014 ). 

An ensemble-based feature selection technique was proposed

y Cai et al. (2015) to classify different lung cancer subtypes

y using DNA Methylation data. This technique integrates Multi-

ategory Receiver Operating Characteristic (Multi-ROC), Random

 orests (RFs) and Maximum Relevance and Minimum Redundancy

mRMR) methods followed by machine learning methods. 

A study conducted by Abusamra (2013) aimed to compare some

f state-of-the-art feature selection and classification methods on

ene expression data of glioma using five-fold cross-validation to

valuate the classification performance. The used feature selection

ethods including: information gain, twoing rule, sum minority,

ax minority, gini index, sum of variances, t -statistics, and one-

imension Support Vector Machine. Feature selection methods are

sed with three classification algorithms; SVM, KNN, and random

orest. 

A feature selection and classification framework is offered

y Valavanis, Pilalis, Georgiadis, Kyrtopoulos, and Chatziioan-

ou (2015) . The proposed framework uses evolutionary algorithms

nd Gene Ontology (GO) tree and is applied on 450k human

ethylation data of breast cancer and B-cell lymphoma. 

Le, Uy, Dung, Binh, and Kwon (2013) tried to identify the asso-

iations between diseases and protein complexes. Firstly, a protein

omplex network is constructed where two protein complexes are

onnected by using their shared genes. Then, random walk with

estart (RWR) algorithm is applied on that network in order to

ank the protein complexes based on their relative importance to
nown disease protein complexes. The performance of that method

s evaluated by the leave-one-out cross-validation method. That

ethod is applied on the breast cancer dataset. 

González and Belanche (2013) applied an algorithm for feature

election using Simulated Annealing and discrete multivariate joint

ntropy on five public domain Microarray gene expression data

amples aiming to find the small subsets of highly relevant genes. 

Luque-Baena, Urda, Subirats, Franco, and Jerez (2013) compared

etween genetic algorithm with constructive neural networks and

he classical Stepwise Forward Selection (SFS) algorithm in predict-

ng the cancer outcome. Welch t -test filtering method is embedded

nto the two algorithms. Those two algorithms are applied on six

ancer gene expression datasets. 

A method for prediction biomarker mining is introduced by

opovic, Sifrim, Pavlopoulos, Moreau, and De Moor (2012) . A ge-

etic algorithm with a novel fitness function and a bagging-like

odel averaging scheme is applied on three independent publicly

vailable Microarray datasets for colon cancer; one for training and

ne for testing and the last one for external validation. Ingenuity

athway Analysis (IPA) is used as a functional analysis to estimate

he biological relevance of the resulting gene signature. 

Prostate cancer biomarker genes are identified by Raza and

aiswal (2013) by constructing a gene regulatory network using

wo-stage filtering approach t -test and fold-change measure. Af-

er identifying significant genes by using the two filtering meth-

ds, Pearson correlation coefficient is used to compute regulatory

elationships between the identified genes. 

Jirapech-Umpai and Aitken (2005) used genetic algorithm as

 wrapper feature selection for predicting gene markers for the

eukemia disease. They assessed the performance using a low vari-

nce estimation technique and presented an analysis of the pre-

icted genes. they concluded that the choice of feature selection

riteria have a significant effect on the classification accuracy. 

Ooi and Tan (2003) applied genetic algorithm to the problem

f multi-class prediction. A GA-based gene selection scheme is

resented to predict the marker gene group, as well as the op-

imal group size, which maximized classification success using a

aximum likelihood (MLHD) classification method. The GA/MLHD-

ased approach is applied to The NCI60 gene expression dataset

ontains the Gene Expression profiles of 64 cancer cell lines. the

pproach achieved higher classification accuracies than other pub-

ished predictive methods on the same multi-class test dataset. 

García and Sánchez (2015) presented a two-stage classification

odel based on combining feature selection with the dissimilarity

ased representation paradigm. The ReliefF algorithm was used in

he first stage to generate a subset of top-ranked genes, whereas,

n the second stage, a dissimilarity space formed by the samples of

he selected genes was used in constructing a classifier. The perfor-

ance of the dissimilarity-based models was analyzed by means

f a collection of experiments to classify eight Microarray gene

xpression datasets using an Artificial Neural Network, a Support

ector Machine and the Fishers linear discriminant classifier built

n the gene space, and the same classifiers built on the dissimilar-

ty space. The experimental results showed that the dissimilarity-

ased classifiers outperform the feature-based models. 

A research was conducted by García, Sánchez, Cleofas-Sánchez,

choa-Domínguez, and López-Orozco (2017) to analyze the effect

f high-dimensional data on the classification of gene expression

atasets. Gain ratio and ReliefF were used as gene ranking meth-

ds with six classifiers on four biomedical datasets. The results

howed that regardless of the used gene ranking algorithm and

lassifier, the highest classification performance was achieved by

sing a very small number of genes (less than the fifth of the total

mount of genes). 

A dynamic relevance-based gene selection method (DRGS) was

ntroduced by Sun et al. (2013) to identify a gene subset from
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Table 1 

Datasets description. 

Dataset type Number of variables Dataset function Sample type Number of samples 

TCGA gene 17,815 genes 46 samples for 5-fold cross validation Normal 21 

Expression data training and 200 samples for testing Cancer 225 

GEO gene 17,815 genes 174 samples for Independent test Normal 19 

Expression data Cancer 155 

DNA Methylation 27,578 CpG sites 276 samples for 5-fold Normal 42 

cross validation training Cancer 234 
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high dimensional gene expression Microarray data for cancer clas-

sification and diagnosis. This method aimed to use a target-based

scheme for relevance, interdependence and redundancy analysis to

retain the useful functional gene groups. This is done by updating

the relevance between each gene and target dynamically when a

new gene is selected. The proposed method was validated against

Information Gain, mRMR, ReliefF, and Significance Analysis of Mi-

croarrays (SAM) on six gene expression Microarray datasets. The

results showed that, compared to the other selectors, DRGS se-

lected fewer genes with higher classification accuracy. 

In this study, an ensemble feature selection approach based on

a Nested Genetic Algorithm is proposed to select the optimal Mi-

croarray genes subset that represents the biomarker genes of one

cancer type by combining the information from two types of Mi-

croarray data; gene expression data and DNA Methylation data.

The Nested Genetic Algorithm (Nested-GA) utilizes both Filter and

Wrapper feature selection methods. For filter feature selection, t -

test is used as a preprocessing step. Then, a Nested Genetic Al-

gorithm composed of two genetic algorithms, one with a Sup-

port Vector Machine (SVM) and the other with a Neural Network,

are used as the Wrapper feature selection technique. Incremental

Feature Selection (IFS) is then used as an ensemble approach to

present the biomarker genes as its outcome. 

2. Materials and methods 

2.1. Datasets 

The results presented in this paper are based on the colon can-

cer gene expression data downloaded from The Cancer Genome

Atlas (TCGA) https://tcga-data.nci.nih.gov/tcga/ and TCGA DNA

Methylation dataset based on the IHM-27k platform for running

the Nested-GA algorithm. The colon cancer gene expression data

from Gene Expression Omnibus (GEO) from NCBI has been used as

a dataset for independent testing. Table 1 shows more details of

the used datasets. 

2.2. The proposed algorithm 

The pipeline of the proposed method, as shown in Fig. 1 ,

starts by preprocessing for both the Gene Expression and the DNA

Methylation datasets before applying feature selection. After that,

feature filtering is applied using t -test to select a subset of the

top ranked Genes and CpG sites from Gene Expression and DNA

Methylation data. The filtered gene subset is fed as an input to the

OGA-SVM with SVM fitness function, while the filtered CpG sites

subset is fed as input to the IGA-NNW with N -Net fitness function.

Finding the relation between genes and CpG sites is important step

that is used in the initialization stage of each IGA-NNW and OGA-

SVM. After determine number of runs of OGA-SVM, we get number

of solutions N . We rank the genes in the N solutions in descend-

ing order based on their frequency. Next, we incrementally append

genes with high rank producing M subsets of top ranked genes,

models. SVM is used to evaluate the M models to get the optimal

model. At the end, the optimal model’s genes are validated. 
.2.1. Preprocessing step 

It is common to have some genes with missing expression val-

es in most of the gene expression datasets. These genes should

lay no role in building the final classifier, and so, they should

e excluded. The same exclusion process can be applied to ex-

lude the CpG sites with missing values from the DNA Methylation

atasets. 

.2.2. Filter feature selection 

Within the huge gene expression data, there are hundreds

enes that are irrelevant or redundant. So, it is significant to re-

uce the number of genes in order to get a good accuracy for the

lassification task. The Student’s t -test is one of the most success-

ul filter feature selection methods in terms of the quality of the

anked features ( Huerta, Duval, & Hao, 2010 ). We apply Student’s

 -test on gene expression dataset using t.test() R function as fol-

ows: 

1. Divided samples into two classes; normal and tumor. 

2. Calculate p -value for each feature reflecting how this feature is

effective at separating classes. 

3. Order all features according to p -value ascending. 

4. Select the best features (with low p -value). 

For gene expression dataset we select the first 30 0 0 gene and

n DNA Methylation dataset we select the first 10,0 0 0 CpG site. 

.2.3. Proposed wrapper feature selection (Nested-GA) 

A simple GA starts with initializing a population and runs in

ultiple iterations. Each iteration consists of some steps, which are

nown as GA operators; selection, crossover and mutation. At the

nd of each iteration, a new generation is created to be inputted

o the next iteration. The algorithm terminates when reaching the

aximum number of iterations or finding the best solution. 

The proposed Nested-GA consists of two Nested Genetic Algo-

ithms; Inner and Outer. The Outer one (OGA-SVM) is the main

lgorithm that has gene expression data as input and outputs the

est subset of genes evaluated by SVM as a fitness function. The

nner one (IGA-NNW) takes DNA Methylation data as input and

utputs the best subset of CpG sites by utilizing deep-learning for

tness function. We have two-way update from IGA-NNW to OGA-

VM and from OGA-SVM to IGA-NNW. Each iteration of OGA-SVM,

 complete run of IGA-NNW is performed firstly to output a sub-

et of CpG sites used as guidance in forming the population of the

GA-SVM in this iteration. So instead of initializing the population

andomly, we initialize the population with genes related to best

pG sites resulting from the IGA-NNW which improves the abil-

ty of OGA-SVM in finding the best genes. The same thing is done

n IGA-NNW by initializing the population with CpG sites related

o best genes resulted in the previous iteration of OGA-SVM. So

he final solution of Nested-GA is resulting from combining the in-

ormation from Gene Expression and DNA Methylation data. The

owchart of the Nested-GA algorithm is depicted in Fig. 2 , and its

seudocode is illustrated in Listing 1 . 

https://tcga-data.nci.nih.gov/tcga/
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Fig. 1. Pipeline of the proposed method. 

Fig. 2. Nested-GA flowchart. 



238 S. Sayed, M. Nassef and A. Badr et al. / Expert Systems With Applications 121 (2019) 233–243 

Listing 1. Nested-GA pseudocode. 

Fig. 3. Chromosome structure. Each gene in the chromosome refers to an index of 

either a gene (Outer GA) or a CPG site (Inner GA). 
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Nested-GA Chromosome Structure A chromosome ch with n

features is represented as ch = ( x 1 , x 2 , ..., x n ). These n features are

randomly selected from the reduced feature set F produced from

the previous stage. Each feature x i is represented as an integer

value that refers to the index of this feature in F . The chromosome

structure shown in Fig. 3 is used for IGA-NNW chromosome CpG-

InCH and OGA-SVM chromosome Gene-OutCH . 

Steps of Nested-GA are as follow: 

1. Initialize the OGA-SVM population of chromosomes: 

(a) Initialize the IGA-NNW initial population p i with Y chro-

mosomes each contains y CpG sites selected from the fil-

tered CpG sites ( Fc ) produced from the previous stage. Each

chromosome is represented as an array of y indices from 1

to Fc that refer to the selected CpG sites. In first iteration

of Nested-GA, IGA-NNW chromosomes are randomly initial-

ized. For iteration i ( i = 2, ..., x ) of Nested-GA, IGA-NNW

chromosomes are initialized by using best OGA-SVM chro-

mosomes from previous iteration i-1 . Genes in OGA-SVM

chromosome are mapped to CpG sites by using the minfi

and IlluminaHumanMethylation27kanno:ilmn12:hg19 R pack-

ages. Each gene can be mapped to h ( h = 0 : 50) CpG sites. 

(b) Calculate the fitness value f i for each chromosome in the

current IGA-NNW generation using deep-learning neural

network as fitness function. Using 5-fold cross-validation,

train the neural network with the training data producing

weights used in classifying samples in the test data. Those

weights are used in calculating a score f for each chromo-
i 
some reflecting the quality of this chromosome to be se-

lected in the next generation. 

(c) Check if the termination conditions have been reached. The

algorithm terminates with two conditions; reaching a solu-

tion with a predefined fitness value or reaching a predeter-

mined number of iterations. In this case the algorithm out-

puts the best solution (subset of CpG sites) which is the

chromosome with the highest fitness value in the current

generation. Otherwise continue with the following steps. 

(d) To improve the performance, we select the best chromo-

somes in the current generation to be persisted in the next

generation with no change (elitism mechanism). To avoid

trapping in local peaks, we chose to perform elitism for 9

consecutive generations and cancel it for the 10 th genera-

tion and repeat that for all generations. 

(e) Apply Roulette Wheel Selection ( Sastry, Goldberg & Kendall,

2005 ) to select subset W for crossover with length l c . Steps

of selection are as the following: 

i. Generate random number r between 0 and sum of fit-

ness values. 

ii. For each chromosome in the current generation, check

if the chromosome’s fitness is less than r then pick this

chromosome to be in W and return to step 1. Otherwise,

check another chromosome. 

iii. Repeat step 1 and 2 till l c chromosomes are selected. 

(f) Apply crossover by randomly select two parent chromo-

somes to create two new chromosomes. Crossover is applied

as in Fig. 4 . 

(g) Randomly select set of chromosomes with length lm for

mutation with mutation rate Pm . Perform a random sin-

gle point mutation on these chromosomes by altering their

genes values to ensure that a sufficient portion of the pa-

rameter space is explored. 

(h) Replace old generation with the new generation contained

all chromosomes produced from elitism, crossover, and mu-

tation algorithms. 

(i) Repeat from step (b). 

2. Calculate the fitness value svmf i for each chromosome in the

current OGA-SVM generation using SVM method from e1071

package as fitness function. Using 5-fold cross-validation, train

the SVM algorithm with the training data then used it to

produce the accuracy of classifying samples in the testing

data. 

3. Check for the termination conditions (as illustrated in Step (C)),

and then output the fittest solution (subset of Genes) in this

generation. Otherwise continue with the following steps. 

4. Form a subset of chromosomes by applying elitism for 9 con-

secutive generations and cancel it for the 10 th generation and

repeat that for all generations. 

5. Apply Roulette Wheel Selection ( Sastry et al., 2005 ) to select

subset w for crossover with length lc and subset h for Mutation.

6. Apply crossover by randomly select two parent chromosomes

to create two new chromosomes. 

7. Perform a random single point mutation. 

8. Select best chromosomes from current generation in OGA-SVM

and perform step 1 (IGA-NNW). 

9. Get the best subset of CpG sites and get their related Microar-

ray genes to produce k OGA-SVM chromosomes. 

0. Generate new OGA-SVM generation from combining chromo-

somes in k, h, w, e . 

1. Replace old generation with the new generation contained all

chromosomes produced from elitism, crossover, and mutation

algorithms. 

2. Go back to step 2. 

he parameters used in Nested-GA are described in Table 2 . 
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Fig. 4. Crossover mechanism. 

Table 2 

Nested-GA parameters description. 

Parameter Description Value 

N number of Microarray genes (features in OuterGA) 17,814 

M number of CpG sites (features in InnerGA) 27,578 

Fg reduced features (Microarray genes) by T -test 30 0 0 

Fc reduced features (CpG sites) by T -test 10,0 0 0 

Outer-PSize number of chromosomes in OuterGA population 15 

Inner-PSize number of chromosomes in InnerGA population 20 

n number of genes in a chromosome for OuterGA 20 

m number of genes in a chromosome for InnerGA 50 

Outer-maxIter maximum number of iterations for OuterGA 100 

Inner-maxIter maximum number of iterations for InnerGA 100 

J counter increased with each iteration in InnerGA 1 : Outer-maxIter 

I counter increased with each iteration in OuterGA 1 : Inner-maxIter 

Outer-Pc probability of crossover for OuterGA 0.5 

Inner-Pc probability of crossover for InnerGA 0.5 

Outer-Pm probability of mutation for OuterGA 0.1 

Inner-Pm probability of mutation for InnerGA 0.1 

Outer-E elitism selected chromosomes for OuterGA 1 

Inner-E elitism selected chromosomes for InnerGA 2 

Outer-C offspring (chromosomes) produced from crossover for OuterGA 7 

Inner-C offspring (chromosomes) produced from crossover for InnerGA 10 

Outer-U chromosomes produced from mutation for OuterGA 1 

Inner-U chromosomes produced from mutation for InnerGA 2 

R number of Nested-GA runs 100 

goalF required fitness value used in Nested-GA 95% 

k number of folds in cross-validation for Nested-GA 5 

TC1: j maxIter or the desired accuracy from NN (Neural Network) classifier is achieved Inner-maxIter OR goalF 

TC2: i maxIter or the desired accuracy from SVM (Support Vector Machine) classifier is achieved Outer-maxIter OR goalF 
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.2.4. Feature sum ranker 

N feature subsets are produced after repeating Nested-GA N

imes. Unique features are picked from those N subsets, and then

orted in descending order based on their cumulative frequencies

ver all the N subsets. The more frequent a feature, the higher its

ank is. 

.2.5. Feature subsets evaluator 

Ranked features list L is produced from previous stage. Incre-

ental Feature Selection IFS is applied to produce S feature sets.

tarting with the three top ranked features, the first feature set

s constructed. The remaining features are added one by one in-

rementally to produce new feature sets. So each new set is the

revious set with a new feature added. Finally, S feature sets are

onstructed where the i th feature set is: si = ( f 1 , f 2 ,..., f i +2 ) where

1 < i < S+2 ) 

Each feature set is evaluated with SVM using 5-fold cross-

alidation. The feature subset of choice is the one with the highest

lassification accuracy and the lowest number of features. Classifi-

ation accuracy is calculated as in the following equation: 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(1) 

here TP, TN, FP , and FN represent the true positive, true negative,

alse positive, and false negative respectively. 
.2.6. Enrichment Analysis 

Gene Ontology (GO) ( Ashburner et al., 20 0 0 ) and Kyoto Ency-

lopedia of Genes and Genomes (KEGG) pathway ( Kanehisa, Goto,

ato, Furumichi, & Tanabe, 2011 ) are the most famous Enrichment

nalysis tools. Gene and gene product features across all species

re represented in GO. KEGG pathway is used for mapping genes

o pathways. There are three categories for the GO terms, which

re B iological P rocess (BP), Cellular Component (CC) and Molecular

unction (MF). 

. Results and discussion 

This section presents the experimental setup and discusses the

ifferent evaluation techniques of the proposed Nested Genetic Al-

orithm (Nested-GA) based on the colon cancer datasets detailed

n Section 2.1 and Table 1 . The pipeline depicted in Fig. 1 has been

ollowed in all the conducted experiments considering the number

f feature subsets equals 100. Moreover, the parameter values of

he proposed algorithm are listed in Table 2 . 

In order to evaluate the proposed Nested-GA approach, its accu-

acy has been compared to the accuracies of other multiple feature

election algorithms. In all the conducted experiments, the input

eatures are the features selected by t -test filtering method. More-

ver, an independent colon cancer dataset from GEO was used to

urther validate the strength of the classification model. 
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Table 3 

SVM Accuracy on the testing dataset and on the independent dataset. 

Num. of genes GA-SVM accuracy GA-NNW accuracy Nested-GA accuracy 

Testing data Independent testing data Testing data Independent testing data Testing data Independent testing data 

2 0.9461538 0.9482759 0.9461538 0.9425287 0.9384615 0.9425287 

3 0.9769231 0.9770115 0.9561538 0.9561538 0.9923077 0.9942529 

4 0.9769231 0.9827586 0.9923077 0.9942529 0.9846154 0.9885057 

5 0.9846154 0.9885057 0.9769231 0.9827586 0.9923077 0.9942529 

6 0.9923077 0.9942529 0.9846154 0.9885057 0.9999999 0.9999999 

7 0.9923077 0.9942529 0.9923077 0.9942529 0.9999999 0.9999999 

8 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 

Table 4 

Accuracy of OGA-SVM, IGA-NNW, KNN, RF and Nested-GA on the DNA Methylation dataset. 

Num. of CPG sites GA-SVM GA-NNW KNN RF Nested-GA 

2 0.9778761 0.8539823 0.9292035 0.8628319 0.9384615 

3 0.9955752 0.920354 0.9778761 0.8318584 0.9923077 

4 0.9955752 0.9778761 0.9778761 0.9159292 0.9846154 

5 0.9955752 0.9911504 0.9867257 0.9823009 0.9923077 

6 0.9955752 0.9955752 0.9867257 0.9867257 0.9999999 

7 0.9955752 0.9955752 0.9911504 0.9911504 0.9999999 

8 0.9955752 0.9955752 0.9867257 0.9867257 0.9999999 

9 0.9955752 0.9955752 0.9955752 0.9911504 0.9999999 

10 0.9955752 0.9955752 0.9999999 0.9955752 0.9999999 

11 0.9955752 0.9999999 0.9999999 0.9955752 0.9999999 

12 0.9955752 0.9999999 0.9955752 0.9911504 0.9999999 

13 0.9999999 0.9999999 0.9955752 0.9911504 0.9999999 
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At first, Nested-GA has been compared to a non-nested Ge-

netic algorithm with SVM as its fitness function (GA-SVM) and

to a non-nested Genetic algorithm with deep-learning neural net-

work fitness function (GA-NNW) that both run over the colon can-

cer gene expression (CC-GE) dataset. Table 3 lists the SVM perfor-

mance measurement (Accuracy) for the three experiments on the

testing dataset and on the independent dataset, respectively. 

After that, Nested-GA has been compared to GA-SVM, GA-NNW,

KNN, and RF that all run over colon cancer DNA Methylation (CC-

DM) dataset. It is worth to note that Nested-GA uses both the CC-

GE and CC-DM datasets. Table 4 shows the accuracies of the five

algorithms over the testing dataset. Although GA-SVM had better

accuracy compared to Nested-GA when using two or three fea-

tures, the accuracy of Nested-GA was noticeably better than GA-

SVM when using more features. 

Based on the results listed in Tables 3 and 4 , it is clear that

Nested-GA improves the classification accuracy by using fewer

genes (six genes). 

Based on the proposed algorithm, the colon cancer biomark-

ers can be accurately discovered by selecting the smallest satisfac-

tory optimal feature set to represent the Microarray gene markers.

Using this criterion, a feature set including six Microarray genes

is selected. The genes are “DAB2IP ”, “KLRB1 ”, “NUP155 ”, “NPC1L ”,

“CDKN2A ” and “SEC61A2 ”. As a step towards the validation of the

resultant biomarkers, Fig. 5 depicts the heatmap generated for the

six biomarkers genes (rows) with respect to the experimental sam-

ples (columns). It is clear from the heatmap that these six genes

are cooperatively indicating high discrimination ability between

the normal and cancerous samples. Gene DAB2IP has the highest

discrimination ability, whereas gene CDKN2A has the lowest one. 

As a second step towards the validation of the resultant

biomarkers, they have been substituted by six less important

ones (“MGC10701 ”, “CCDC85B ”, “BOC ”, “METTL7B ”, “KIAA2013 ” and

“LAMB3 ”) resulting in accuracy of 0.553 for the testing dataset and

0.501 for the independent dataset. This means that replacing the

six resultant genes by less important ones leaded to deterioration

of the classification accuracy. 
.1. Enrichment Analysis 

The top GO terms and KEGG pathways are derived from

AVID and StRAnGER2. Inputs of DAVID and StRAnGER2 are the

enes where the minimum number of genes corresponding to

O terms and KEGG pathways is 2. Most of the resultant genes

ave been validated in previous research. More specific, DAB2IP

 Kibriya et al., 2011 ), NUP155 ( Ancona et al., 2006; Bianchini et al.,

006; Chakraborty, 2014; Halvey, Zhang, Coffey, Liebler, & Sle-

os, 2011; Zhao, 2013 ), CDKN2A ( Bandrés et al., 2006; Barat &

uskin, 2015; Exner et al., 2015; Kibriya et al., 2011; Lundemo, Pet-

ersen, Berge, Berge, & Schønberg, 2011; Luo et al., 2016 ), NPC1L

 Shi et al., 2010 ), SEC61A2 ( Lundemo et al., 2011 ) have been re-

orted to have effect on colon cancer. Moreover, it has been proved

n uniport ( http://www.uniprot.org/ ) that DAB2IP and CDKN2A are

umor-related genes. 

Furthermore, a Copy Number Variation (CNV) dataset of colon

ancer has been used to explore any possible association between

ts tumor CNV segments and the resultant NestedGA six genes. The

NV dataset was downloaded from ( http://firebrowse.org/?cohort=

OAD ). It consisted of 918 samples: 453 tumor samples and 465

ormal samples. The following steps have been implemented as

entioned in ( Guttery et al., 2018 ) in order to reach the genes

hat are intersecting with CNV segments in tumor samples. First,

he Probes meta file from ( ftp://ftp.broadinstitute.org/pub/GISTIC2.

/hg19 _ support/) was used to differentiate between the normal

nd tumor CNV segments. After that, a dataset for all the human

enes (hsapiens gene ensembl) from the host (grch37.ensembl.org

hg19)) was used as a reference dataset with CNV colon dataset

o get the genes overlapped with CNV segments. This step was

one by utilizing the two R packages entitled biomaRt and Ge-

omicRanges . At the end, the resultant 554 genes have been inter-

ected with the six genes resulted from the Nested-GA approach.

he NUP155 gene appeared to be a common gene between the two

ene sets. This means that the CNV segments falling inside the

UP155 gene might play an important role in altering its normal

xpression level. 

http://www.uniprot.org/
http://firebrowse.org/?cohort=COAD
ftp://ftp.broadinstitute.org/pub/GISTIC2.0/hg19_support/)
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Fig. 5. A heatmap of the resultant six colon cancer biomarker genes. 

Table 5 

Lung cancer dataset description. 

Dataset type Number of variables Dataset function Sample type Number of samples 

TCGA gene 17,813 genes 70 samples for 5-fold cross validation LUAD 33 

Expression data training and 118 samples for testing LUSC 155 

DNA Methylation 27,578 CpG sites 311 samples for 5-fold LUAD 151 

cross validation training LUSC 160 
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Table 6 

Accuracies of OGA-SVM, IGA-NNW and Nested-GA over the lung cancer DNA 

Methylation dataset. 

Num. of CPG sites GA-SVM GA-NNW Nested-GA 

2 0.8151659 0.7630332 0.8992248 

3 0.8199052 0.7677725 0.875969 

4 0.8388626 0.8151659 0.9224806 

5 0.7819905 0.8246445 0.9379845 

6 0.7867299 0.7772512 0.9457364 

7 0.7772512 0.7914692 0.9612403 

8 0.7345972 0.7298578 0.9457364 

9 0.6777251 0.7582938 0.9534884 

10 0.6872038 0.7725118 0.9534884 

11 0.7014218 0.7725118 0.9689922 

12 0.7393365 0.7725118 0.9612403 

13 0.7440758 0.7772512 0.9534884 

14 0.7393365 0.7867299 0.9612403 

15 0.7393365 0.7819905 0.9767442 

16 0.7393365 0.7772512 0.9844961 

t  
.2. Comparative study 

Following the same experimental pipeline depicted in Fig. 1 and

he same Nested-GA parameter values mentioned in Table 1 , a

omparative study has been conducted between the proposed

ested-GA algorithm and the work presented in ( Cai et al., 2015 )

hat was based on DNA Methylation lung cancer datasets. The aim

f this comparative study was to check the effectiveness of the

roposed algorithm with respect to another type of cancer that has

nown subtypes. 

Table 5 describes the Gene Expression and DNA Methylation

ung cancer datasets used by Nested-GA. The accuracies of OGA-

VM and IGA-NNW running over DNA Methylation datasets have

een compared to the Nested-GA accuracies with respect to differ-

nt number of features (CpG sites). Table 6 lists the accuracies of

GA-SVM and IGA-NNW compared to Nested-GA. It is clear that

ested-GA resulted in noticeably better classification accuracies

etween the two lung cancer subtypes compared to the accuracies

f OGA-SVM and OGA-NNW. Moreover, Nested-GA resulted in sig-

ificantly better accuracy (98.45%) using only 16 features compared
 i
o the highest accuracy published in ( Cai et al., 2015 ) (84.54%) us-

ng 45 features. 
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4. Conclusion 

This study introduced a Nested Genetic Algorithm (Nested-GA)

that consists of two genetic algorithms as an approach for fea-

ture selection by correlating different types of Microarray datasets.

Nested-GA was applied on high dimensional Gene Expression and

DNA Methylation Microarray data for colon cancer aiming to iden-

tify cancer biomarkers. An Incremental Feature Selection (IFS)

strategy was used to select few informative and significant Mi-

croarray genes after running Nested-GA for number of times. 

The results showed that the optimal Microarray genes subsets

obtained by the Nested-GA produced perfect classification perfor-

mance on both the testing and the independent testing datasets

compared to other feature selection techniques such as KNN and

RF. Additionally, the biological significance of the Microarray genes

subsets has been validated using GO and KEGG pathways Enrich-

ment Analysis. The resultant subset of six genes can be used in

finding proteins related to colon cancer which are useful in deter-

mining the suitable drugs. 

Moreover, Nested-GA is significantly able to differentiate be-

tween lung cancer subtypes. As a future work, other optimization

techniques can be used as a fitness function for the Nested-GA’s

inner and outer algorithms. 
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